ATLAS Program at BNL Detector, Performance and Physics

DOE Site Visit
Breakout Session Discussions
Sept 9, 2009

Outline

- Presentation by Marc-Andre Pleier
 - Charting New Physics Phenomena at ATLAS using Top Quarks
 - One of our physics analysis aspirations.
- Discussions on current activities
 - Current scope, plan for future, budget impact
 - Emphasis on Core program
 - Detector M&O
 - Performance
 - Physics Analysis
 - Detector R&D for upgrade
 - (Computing/Software issues were discussed in recent briefing)

Summary of Plan for ATLAS at BNL (Core)

- Maintain the current level of commitments to ATLAS detector M&O, software and performance
 - Crucial roles in successful ATLAS operations
- Expand Physics Analysis Efforts
 - Maximize benefits from detector and software expertise
 - Sustain our leadership roles in physics in ATLAS
 - Commitment to support US ATLAS physics analysis
 - Requires wide expertise
 - Best accomplished when we are actively doing physics
 - Transition remaining FTEs on DØ to ATLAS (2012?)
 - Additional postdocs and junior staff to carry out the planned physics analysis topics, and analysis support

Summary of Plan for ATLAS at BNL(Core)

- Strengthen upgrade R&D program, prepare for the sLHC detector upgrade construction
 - Leading the LAr and Forward Muon upgrade, well matched to past experience
 - Established silicon strip R&D. The stave assembly production center at BNL will ensure US a leading role in ATLAS tracker upgrade

Project	FTE
LAr	0.85
Muon	0.4
Si Tracker	1.5*
Total	2.75

Current core scientific staff on sLHC upgrade *: includes new hire.

- Current scientific staff level is insufficient for carrying out planned R&D and construction
 - Need staff scientists to take lead roles in all three areas
 - Supplemented by postdocs on detector R&D

Current and Proposed Staff Increase

2009-2012

Add 1 staff scientist and 1 postdoc each year 2009 hires possible by Lissauer's on-leave,

Pleier (Assistant Physicist, Aug-09) Gadfort (Goldhaber Fellow, Oct-09)

One postdoc position open, based on FY09 supplemental fund

 Split between physics analysis and detector R&D

Attract promising young physicists with long term career path

Students

Share cost with universities

Cost effective in physics analysis, with close guidance by staff

Universities value this collaboration

3 students identified already.

We are also working with other students without direct cost to us.

			FY12			
Staff Scientists	Current	2009	2010	2011	2012	Total
Physics Analysis	4.0	0.5			0.5	5.0
Performance	2.5					2.5
Software	2.5					2.5
Analysis Support	1.0					1.0
LAr	1.5			0.5	0.5	2.5
Muon	0.8		0.5	0.5		1.8
тс	0.2					0.2
Si R&D	1.0	0.5	0.5			2.0
Total Staff:	13.5	1	1	1	1	17.5
Postdocs	Current	2009	2010	2011	2012	Total
Physics Analysis	0.5	0.5	0.5	0.5	0.5	2.5
Performance	0.5					0.5
LAr	1.0	0.5		0.5		2.0
Si			0.5		0.5	1.0
Total Postdocs:	2	1	1	1	1	6
Total Students: DOE Site Visit	0	2	1	1	-	4

9/9/09 DOE Site Visit 5

BNL ATLAS Detector, Software, Performance and Physics Activities

Detector N Softwar	LAr Calorimeter Ma,Snyder,Lanni, Majewski, Tarrade Damazio, Chen	Muon CSC Polychronakos Assamagan,Ad Tcherniatine	'		l Coor. Raj nakos Beg	gger agopalan gel, mazio	Rajag Assai Ma,S	Software gopalan magam, nyder, popescu	Dist. Comp/DM Wenaus + 10 software professionals
Performance	e-gamma Snyder,Ma Rajagopalan	Jet/EtMi Majewsł Begel, Pl	ki ,Paige,		Muon Peri Adams Assamaga		Prot	copopescu ade, Patw	
Early Physics					earcy, <mark>S</mark> ny	n(including τ) rcy, Snyder,Begel, an,Pleier,Protopopescu			
Long Term Physics	Inclusive SUSY (I+Et+jets) Redlinger, Paige, Gibbard H->ττ Protopopescu, Tarrade			u,			new Pleie	physics with tT	
Upgrade R&D	LAr Readout U Lanni, Takai, Ch	_		acke n,Ple	er (Strip) ier		ward Mu ychronak		niatine

FY-09 Supplemental Requests for ATLAS

- Travel for ATLAS
 - Additional Travel for preparations for LHC start-up
 - Ramp-up of R&D for ATLAS upgrade
 - \$200k requests, \$175k Received
 - Helps greatly with our increased roles in ATLAS data taking period and R&D
- Augment the ATLAS Tier-3 analysis facility at BNL
 - Computing needs for BNL's analysis activities:
 - 25X8-core CPUs, 40TB nfs disk and 100TB dCache disk
 - \$342k requested, \$100k received
 - Order of 17X8-core CPUs out, rest for disk later
 - Requires continuing yearly investment in Tier-3 for BNL physicists: ~ \$150k
- Strengthen analysis and detector R&D by two staff members and two postdocs
 - Accelerate the plan outlined in June review
 - \$320k for the remaining FY-09 requested, \$150k received.
 - One postdoc position already open. Included in the future core program.
- Equipment fund for Silicon R&D (KA15)
 - \$475k requested for wire bonder and OGP smart scope
 - Not approved.
- The support is greatly appreciated

Budget Scenarios

- Additional staff as proposed in June Proton Research Review
 - 1 postdoc + 1 staff scientist each year (FY10-FY12)
 - Split between ATLAS Physics and Upgrade R&D
- Impact on the plan if the requested increase is reduced
 - Maintain the current level of commitments to ATLAS M&O
 - Reduction in US ATLAS Operations program already seen in FY10 budget
 - Modest expansion of the physics analysis and support
 - LHC physics is top priority.
 - Supporting USATLAS physics analysis essential for LHC physics in US
 - Maintain our leadership roles in the three areas of ATLAS upgrade R&D
 - BNL Expertise is crucial for long term LHC detector upgrade
 - Adapt the R&D plan to actual sLHC schedule
- For flat budget scenario
 - ATLAS is high priority for HEP at BNL
 - Re-direction may be necessary, subject to national priority

ATLAS Detector M&O

- First years of operation will be challenging
- We have major responsibilities and commitments in detector operations during the data taking
 - Liquid Argon Calorimeter:
 - Front-End integration and Detector Control System
 - Develop LVPS backup options for long term reliability
 - Calibrations/Performance
 - Cathode Strip Chambers
 - Maintenance of the overall system
 - Data analysis for performance optimization
 - Trigger
 - Coordination, Calorimeter trigger, trigger performance
 - Technical coordination
 - Access & Installation, Configuration Control, coordinate US ATLAS TC effort
- Reduction in US ATLAS operations programs for detector M&O
 - Technical staff: 11 FTE in FY09 to (expected) 7.3 FTE in FY10
 - No increase in US ATLAS upgrade R&D
 - 1 FTE to ACF, 2.5 FTE to LArTPC (microBooNE / LBNE)

ATLAS Physics Analysis

- BNL has built a strong foundation for physics analysis
 - Extensive expertise in detector, software and performance
 - Lead the analysis software tool development
 - Active in physics analysis since the beginning
- Taking leadership roles: ATLAS Physics Working Group Conveners:
 - K. Assamagan: Higgs (10/2008), G. Redlinger: SUSY(10/2009), P. Steinberg(N.P.):Heavy Ion (10/2008) Cultivated by many years of active roles in ATLAS physics analysis
- Near and Long Term physics goals defined
 - Aim to staff each physics analysis with at least one leading scientist, and post-docs/ students (not all analyses are covered yet), early physics results identified.
- Benefiting US ATLAS Physics Analysis
 - Closely working with US ATLAS physicists on a few analyses
 - Analysis support for US physicists based on our own analysis expertise
 - Analysis Jamborees and LHC@BNL workshop
- Increase in analysis effort will further expand our contributions to LHC Physics and Analysis Support
 - Crucial for sustaining our leadership roles

Core Program vs US ATLAS Operations

- Scientific Leadership from Core program, engineering and technical resources provided by the US ATLAS Operations Program
- M&O and R&D efforts are completely integrated with US ATLAS planning.
- Roles of BNL core funded personnel in US ATLAS and technical staff (FTE in FY10) working with them

S. Rajagopalan: Deputy Computing Manager

V. Polychronakos: TC and Muon (3.85 FTE)

F. Lanni: LAr electronics M&O and Upgrade R&D (4.6 FTE)

T. Wenaus: Distributed Computing (8.5 FTE + OSG (2 FTE))

D. Lynn: Si Tracker R&D (2 FTE)

– H. Ma + : Analysis Support Center (0.5 FTE)

FY-09 FTEs supported by US ATLAS Operations Program on detector M&O, upgrade, software and performance at BNL

Projects	FTEs		
	Operations Program		
Detector M&O	11		
Upgrade R&D	3		
Software	8		
Performance	0.5		
Analysis Support	0.5		
Total	23		

engineers, software professionals and technicians

ATLAS Upgrade R&D

- Upgraded LHC (E_{cm}=14 TeV and L ~ a few 1000 fb⁻¹)
 - Precision measurements of new phenomena, and/or
 - Continue search for new physics at high mass scale
 - Currently no other comparable option in HEP in energy frontier
- ATLAS needs a major upgrade as luminosity increases
 - Independent of LHC phase 2 upgrade (L = 3X10³⁴ or 10³⁵/cm²/s)
 - Challenging requirements on detector performance
 - Requires long lead detector R&D time
 - Original ATLAS detector took ~10 years of R&D
- BNL's leadership roles in ATLAS upgrade
 - Forward muon upgrade (Phase 1 and Phase 2)
 - V. Polychronakos leads ATLAS Muon Micromegas R&D and readout electronics
 - R&D on LAr readout upgrade, → production of new readout system
 - F. Lanni is the ATLAS LAr upgrade co-coordinator
 - R&D on Si Tracker Stave design, serial power → Si barrel strip production center
 - D. Lynn coordinates the ATLAS Tracker Upgrade Barrel Strip Stave R&D
- Budget impact
 - Scope defined together with US ATLAS Operations program
 - Constant effort from Core and US ATLAS Operations → longer R&D time
 - Prioritize, and focus on long lead R&D items
 - In the future we may have to drop responsibilities if funding is limited in the construction phase

Scientific staff appointments supported by the Core Research active in the detector construction, maintenance and operation or upgrade R&D

	1994-1995	2001-2003	2009	Other activities now
H. Gordon	0.5(LAr)	-	-	Project Management
D. Lissauer	1.0(LAr)	1.0 (TC)	-	NSF
H. Takai	1.0(LAr)	1.0(LAr)	0.5(LAr R&D)	Outreach
D. Rahm	1.0(LAr)	1.0(LAr)	-	Retired
I. Stumer	-	0.2(TC)	-	Retired
V. Polychronakos	1.0 (Muon)	1.0(Muon)	1.0 (Muon M&O/R&D, TC)	
R. Hackenburg	-	0.5(LAr)	-	Neutrino
V. Tcherniatine	-	1.0(Muon)	-	US ATLAS Operations
S. Rajagopalan	-	0.5(LAr)	-	Trigger
H. Ma	-	0.3(LAr)	-	Software/performance
F. Lanni	-	1.0(LAr)	0.9 (LAr M&O/R&D)	LArTPC
K. Yip	-	0.4(LAr)	-	CA-D
D. Lynn	-	-	1.0 (Si R&D)	
M-A. Pleier	-	-	0.5 (Si R&D)	Physics
Total	4.5	7.9	3.9	

Sw/Perf/Physics Effort around 2003 (Rajagopalan/Ma/Assamagan/Wenaus/Yip) 3.5 FTE

DOE SITE AIRIT

Muon Upgrades: Future Plan

- Within the RD51 collaboration at BNL we are preparing a 2nd large area prototype, to expose on testbeam at CERN later this year.
- Readout ASICs are being developed in our Instrumentation Division. We plan to test the prototype with these devices
 - We are proposing to the ATLAS collaboration the following upgrade plan:
- Phase-I:
- Augment the CSC sub-system with additional MicroMegas to reinstate the original project's scope.
- Develop Front-End ASICs to install in these new chambers.

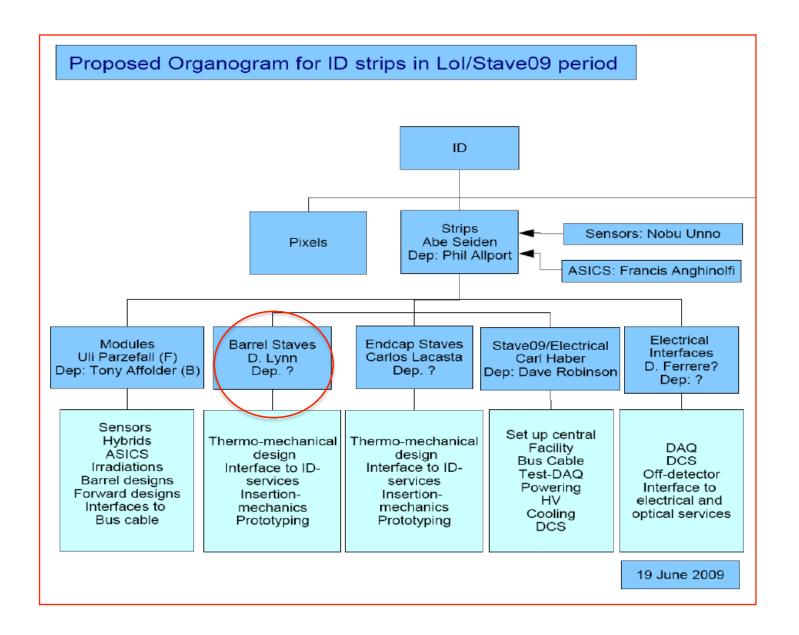
- Phase-II:
- Front-End ASIC development may become a formal responsibility for Phase-II overall Muon Upgrades (TGC/MDT chambers in the Inner and Medium Radius of the Large Wheels) if Micromegas are adopted as THE detector technology
- To support detector operations and develop R&D plans we need one additional scientific staff.
 - Currently only 0.4 FTE

LAr Upgrades: Future Plan

- Our R&D activities will continue over the next years. On the mid and long term:
 - Coordination and mgmt of ATLAS LAr and US-ATLAS LAr
 - Readout architecture definition
 - R&D on front-end electronics
 - R&D on back-end readout
 - Performance study of an upgraded LAr detector
 - Prepare for production of both Front-End and Back-End electronics
- Additional scientific staff needed for the LAr R&D effort.
 - 1 scientist and 1 post-doc.
 - currently 0.85 FTE

Si Tracker Upgrades: Future Plan

R&D plan


- 1. Continue to develop the stave core design, currently is the leader of this effort
- 2. Developing the techniques toward high production full stave assembly
- 3. Continue our leadership role in developing the real time and slow control protection circuitry in the form of a custom ASIC
- 4. Refine our early stave mount and barrel designs and make all-carbon prototypes
- 5. Support DC-DC converter developments with irradiations and testing
- 6. Develop module array concept that permits fast manufacturing of multiple modules

Roles in Future Production

- East Coast Center for final stave assembly and testing of ½ barrel strip staves
- Participate with Yale in the fabrication of ½ the barrel stave cores
- Provide and test the Serial Power Protection ASIC
- Design and fabricate final carbon composite barrels
- Be a high rate US module assembly site
- We plan an increase of 0.5 FTE scientist and 1 FTE postdoc in the next 2 year
 - Currently 1.5 FTE

US ATLAS Plan: BNL, LBNL and SLAC for the Silicon Tracker Upgrade Construction

- Phase 1: IBL Insertable b-layer pixels (only U.S. can do these tasks in ATLAS)
 - LBNL: Front end chips, services, stave concept for pixels
 - SLAC: 3-D detectors, power schemes, data transmission to DAQ, perhaps CO₂ cooling
- Phase 2: Pixels same topics
- Phase 2: Strips only national lab is BNL
 - BNL: ½ barrel strip stave assembly
 - Working with Yale, Stony Brook, NYU, Penn and Duke on Staves

Software Applications Support

Presently focused on ATLAS computing

U.S. ATLAS Project - 7.5 FTEs

Open Science Grid (SciDAC) – 2.5 FTEs

(.5 'subcontracted' to UT Arlington)

Focus areas selected for US ATLAS physics analysis impact

Distributed data management and event storage

Production management and workflow

Analysis systems and tools

Software support, U.S. Librarian – complementing the Tier 1

Mature, stable and influential team

Leadership roles in all focus areas

ATLAS manpower ramp is complete; last hire 1.5 years ago

Low staff turnover; no departures in 5 years

Have shifted from development to operations as principal activity

Outlook

1-3 years: datataking scale-up, system refinements based on operations

2-5 years: development iteration

Scalability, manageability, tracking computing evolution

Many-core processing

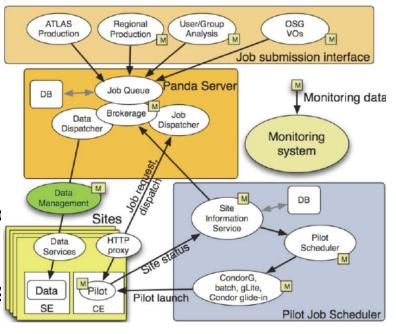
Evolving distributed computing landscape (clouds, data storage)

Software Applications Support - Principal Activities in ATLAS

Distributed data management and event data storage

- Overall responsibility for ATLAS DDM operations
- Leading role in DDM design, implementation, management since inception

Production management and workflow


- Principal role in developing and managing PanDA
- Distributed production and analysis system fo ATLAS (& OSG)
- We also developed the production task definition system that 'feeds' PanDA
- Our systems account for the complete ATLAS production workflow

Analysis systems and tools

'pathena' provides easy access to distributed analysis via PanDA Now expanding from US-centric to ATLAS-wide (popular) ATLAS has chosen PanDA as the primary tool for distributed analysis High level expertise in ROOT, PROOF, POOL applied to analysis tools

Software support

U.S. ATLAS Software Librarian – software installations, support Responsible for ATLAS-wide nightly build and test systems Software validation – focus on muon system reconstruction validation

